منابع مشابه
Stochastic time-dependent current-density-functional theory.
A time-dependent current-density-functional theory for many-particle systems in interaction with arbitrary external baths is developed. We prove that, given the initial quantum state |Psi0> and the particle-bath interaction operator, two external vector potentials A(r,t) and A'(r,t) that produce the same ensemble-averaged current density, j(r,t), must necessarily coincide up to a gauge transfor...
متن کاملCommunication: Embedded fragment stochastic density functional theory.
We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurio...
متن کاملSelf-averaging stochastic Kohn-Sham density-functional theory.
We formulate the Kohn-Sham density functional theory (KS-DFT) as a statistical theory in which the electron density is determined from an average of correlated stochastic densities in a trace formula. The key idea is that it is sufficient to converge the total energy per electron to within a predefined statistical error in order to obtain reliable estimates of the electronic band structure, the...
متن کاملStochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.
We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham...
متن کاملThe conductivity of strong electrolytes from stochastic density functional theory
Stochastic density functional theory is applied to analyze the conductivity of strong two species electrolytes at arbitrary field strengths. The corresponding stochastic equations for the density of the electrolyte species are solved by linearizing them about the mean density of ionic species, yielding an eective Gaussian theory. The non-equilibrium density–density correlation functions are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: WIREs Computational Molecular Science
سال: 2019
ISSN: 1759-0876,1759-0884
DOI: 10.1002/wcms.1412